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The dynamic epidemic model@N. Vandewalle and M. Ausloos, J. Phys. A29, 309 ~1996!# considers the
growth of a cluster in a medium containing a fractionx of mobile ‘‘particles’’ that are pushed by a propagation
front. This model is exactly solved here on various chains and trees that contain loops following an ‘‘evolution
matrix’’ method. The exact value for the percolation thresholdxc and the critical exponents are calculated for
static and mobile particles, respectively. Surprisingly, the mobile character of the particles affects the values of
the critical exponents on chains but not on trees. Thus there is a nonuniversal behavior for dynamic epidemics
even ond51 lattices.@S1063-651X~96!06910-3#

PACS number~s!: 64.60.Ak, 05.40.1j

I. INTRODUCTION

In order to study the case of a far from equilibrium inva-
sion of a phase in a random medium, various simple models
have been imagined such as invasion percolation@1#,
diffusion-controlled reaction@2#, forest fire@3#, and epidemic
models @4#. The percolation phenomenon theory generally
gives a useful framework for studying these models. One
usually searches for critical thresholds and critical exponents
near percolation thresholds. Most of time, the critical expo-
nent values depend only on the dimensionality of the under-
lying lattice.

Less attention has been paid to the cases in which a dy-
namical interaction exists between the spreading phase and
the medium. One can cite as an interesting example the case
of particles that are pushed by a solid-liquid interface@5#.
Related to this kind of problem, let us mention bubbles@6#
and biological cells@7# pushed by ice-water fronts and incor-
poration of secondary phases in type-II superconductors@8#.
Such a multiparticle problem is of great interest because of
the presence of impurities that are finally trapped. The impu-
rities can influence the physical properties of the medium.
For example, the Y2BaCuO5 particles left after an incom-
plete peritectic reaction act as pinning centers for the vortex
motion in the YBa2Cu3O72d superconducting ceramics@9#.

Recently, we have introduced a dynamic epidemic model
@10# for describing such a spreading of a ‘‘fluid’’ in a me-
dium containing a fractionx of mobile particles. This model
assumes a repulsive interaction between the growing front
and the particles. The pushing of such particles leads to a
nontrivial clustering of particles along~and behind! the
growing front@11#. The process sometimes leads to the trap-
ping of particle aggregates behind the front as in an engulf-
ment process when the front overcomes the impurities. On
the square lattice, a transition between unlimited and limited
growth was found to take place at some particle fraction
xc50.56060.005, i.e., much larger than the threshold value
x c
(e);0.413 of the epidemic~static particle! model. Our pre-

vious work@10# on the square lattice underlined the different

origins for the transition in the ‘‘dynamic epidemic’’ and in
the ‘‘static epidemic’’ model. Surprisingly, the critical expo-
nents for the transition with mobile particles were, however,
found to be equivalent to those of two-dimensional percola-
tion as for the case of an invaded static medium@12#.

In a recent theoretical work@13#, we solved exactly this
dynamic epidemic model on the usual Bethe lattice for any
branching ratez. The Bethe lattice corresponds in some
sense to an infinite dimensionality network. Thus we found a
percolation thresholdxc

(dyn)5(z221)/z2 different from that
of the static case, i.e.,xc

(sta)5(z21)/z. We found that critical
exponents on the Bethe lattice for the static and the dynamic
medium problem were equivalent. This suggested that the
phenomenology of the phenomenon was well described by
our theoretical developments@13#.

However, one should remark that the usual Bethe lattice
contains no loop as in ordinary lattices. Therefore, particles
cannot be trapped by the growing cluster on the Bethe lattice.
The aim of this paper is to provide an exact solution of the
static and dynamic epidemic model on various lattices with
loops thus allowing for trapping by engulfment. Chains with
loops and looped trees, i.e., trees for which a branch~or
bond! is replaced by a loop~a triangle or a square!, are
considered below. Both lattices correspond to the one- and
infinite-dimensional cases, respectively. Notice that the infi-
nite dimensionality of trees is only asymptotic as discussed
in @12# by Stauffer and Aharony for the case of the Bethe
lattice. To our knowledge, it is the first time that ‘‘looped
trees’’ are considered in theoretical developments for perco-
lationlike studies.

In the next section the case of unlooped and looped chains
will be explicitly solved as an illustration of the theoretical
technique used in this paper. In Sec. III the theoretical results
will be presented for various looped trees. We will discuss
results in Sec. IV before drawing a conclusion in Sec. V.

II. STATIC AND DYNAMIC EPIDEMICS
ON UNLOOPED AND LOOPED CHAINS

As an illustration of the technique used herein, we will
solve in this section the simplest chain cases. In Figs. 1~a!–
1~c! three different chains are presented:~a! the first one is a
conventional chain,~b! the second one is a looped chain with
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triangles, and~c! the third one is a looped chain with squares.
The empty sites are denoted by white dots, while the sites
occupied by a particle are denoted by black dots. One should
note that the fractionw of sites that are candidates for par-
ticle trapping takes different values on these lattices. For the
simple chain case, the fractionw is zero. However, the chain
looped with triangles@Fig. 1~b!# hasw51

2, while the chain
looped with squares@Fig. 1~c!# hasw52

3 because particles
can be trapped behind the propagation front.

A. Simple chain

On a simple one-dimensional chain, the dynamic epi-
demic rule is the following. Let a fractionx of sites be oc-
cupied by particles and for convenience let the front go from
left to right. The cluster growth goes as follows. At each
growth step, if a nearest neighboring site on the right is
empty, the site is invaded. However, if this site contains a
particle, the particle is pushed on the next-nearest-
neighboring site if the latter is empty. If this next-nearest-
neighboring site contains a particle, the growth is blocked. In
this case, the invading cluster cannot percolate throughout
the whole chain.

In order to describe this dynamical process of cluster
spreading and particle pushing, it is sufficient to consider a
set of four local configurations~Fig. 2!. If the invading clus-
ter arrives on the left of the configurations, it could invade
the first three configurations of Fig. 2. However, the last

configuration~4! blocks the growth since the particle on the
left of the configuration cannot move. Moreover, for con-
figuration 3, the invasion on the left site pushes the particle
on the empty next-nearest-neighboring site, leading to a 2
configuration. The dynamical process corresponding to the
invasion of the left-hand site is thus described by the 434
transfer matrix

T5S 1
0
0
0

0
1
0
0

0
1
0
0

0
0
0
0
D , ~1!

where each elementTi j is the probability to obtain the con-
figuration labeledi invading the configuration labeledj such
that u i &5( jTi j u j &. The last column ofT contains only zeros
since this configuration does not evolve. Once the dynamical
process (T) is applied, one has to know the probability to
find the next configuration on the chain. This is simply given
by the growth probability matrix

G5S 12x
x
0
0

0
0

12x
x

12x
x
0
0

0
0

12x
x
D , ~2!

where each elementGi j is the average number of configura-
tions i next to a configurationj . The growth process is thus
well described by the iteration of the matrixGT. This matrix
has two degenerate nonzero eigenvaluesl, i.e.,

l5~12x!. ~3!

The critical pointxc
(dyn) is when the largest eigenvalue is

equal to 1. The spreading of the invading cluster through the
chain is thus only possible in the absence of impurities
(xc

(dyn)50). This is similar to the trivial case of static par-
ticles, i.e., to percolation on a simple chain@12#. One should
note that the case of static particles is recovered for aT
matrix that is reduced to

T~sta!5S 1
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0
D ~4!

such that theGT~sta! matrix has only one nonzero eigenvalue
l512x giving xc

(sta)50.
The above development is somewhat trivial on a simple

chain but can be applied to more elaborate lattices. We solve
the epidemic spreading on looped chains~Fig. 1! next.

B. Chain of triangles

Figure 3 presents the eight local configurations for the
description of the epidemic propagation on the chain with
triangle loops@Fig. 1~b!#. Each basic configuration contains
three sites, the one at the top being the candidate on which
the particle trapping can take place. The invasion of the local
configurations corresponds to growth steps depending on the
local configurations, i.e., on the number of particles lying on
the local configuration.

FIG. 1. Three different types of chains:~a! a simple chain,~b! a
chain of triangles, and~c! a chain of squares. The empty sites are
denoted by white dots, while the sites occupied by a particle are
denoted by black dots.

FIG. 2. Four local configurations used to describe the dynamical
process for the epidemics on a simple chain. The empty sites are
denoted by white dots, while the sites occupied by a particle are
denoted by black dots.
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All possibilities will be hereby enumerated for this par-
ticular lattice in order to illustrate how theT matrix is ob-
tained in general.

~i! Let the epidemics invade the left-hand site of the con-
figuration 1. Once this site is invaded, the spreading cluster
will invade either the ‘‘top site’’~see Fig. 3! with a probabil-
ity 1

2 or the ‘‘right-hand site’’ with a probability
1
2 at the next

step. In both cases, configuration 1 remains unchanged by
the dynamical invasion, whenceT1151.

~ii ! Let the epidemics invade configuration 2 by pushing
the particle either to the top site or to the right-hand site both
with a probability 1

2. However, two situations are possible
after this step. The particle pushed on the top site can be
trapped by engulfment if the invasion front overpasses the
particle. This occurs with a probability14 ~T325

1
4!. But the

particle can be pushed to the right-hand site in the next step.
This second final configuration occurs with a probability3

4

~T425
3
4!.

~iii ! A two-stage dynamic invasion as for configuration 3
can also lead to particle trapping on the top site. This engulf-
ment occurs with a probability12 ~T335

1
2!, while the particle

pushing to the right-hand site occurs with a probability1
2

~T435
1
2!.

~iv! The two-step dynamic invasion of configuration
4 does not affect this local configuration since it leaves
unchanged the particle on the right-hand site. ThusT4451.

~v! Let the particle lying on the left-hand site of configu-
ration 5 being pushed to the right-hand site by the invading
cluster. The other particle lying on the top site remains there
since the right-hand site becomes occupied. This leads to
T7551.

~vi! The particle lying on the left-hand site of configura-
tion 6 can be pushed only to the top site, since the right-hand
site is occupied. This leads to the stable configuration 7 and
T7651.

~vii ! In configuration 7 the epidemics can invade the left-
hand site, but the epidemics cannot invade the top site since
the particle lying there is blocked. ThusT7751.

~viii ! Configuration 8 cannot be invaded. Thus the last
column ofT contains only zeros.

TheT andG matrices respectively representing the local
dynamical processes on the local configurations and the
probability to obtain the next ones are thus given by

T51
1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1
4

1
2 0 0 0 0 0

0 3
4

1
2 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0

2 ~5!

and

G5S ~12x!2

0
x~12x!

x~12x!

0
0
x2

0

~12x!2

0
x~12x!

x~12x!

0
0
x2

0

~12x!2

0
x~12x!

x~12x!

0
0
x2

0

0
~12x!2

0
0

x~12x!

x~12x!

0
x2

~12x!2

0
x~12x!

x~12x!

0
0
x2

0

0
~12x!2

0
0

x~12x!

x~12x!

0
x2

0
~12x!2

0
0

x~12x!

x~12x!

0
x2

0
~12x!2

0
0

x~12x!

x~12x!

0
x2

D . ~6!

One should remark that the elements of the matrixT
can take noninteger values. This is a characteristic of
lattices with loops on which trapping occurs with
noninteger probabilities. The sum of the elements of each
column ofT is 1, expressing the normalization of the prob-
abilities except for the elements of the last column of

T, which are zeros. The sum of the elements of each
column of G is also 1 since each local configuration is
connected to only one configuration on a chain. Notice
also that numerous elements ofG are zeros. This means
that some local configurations cannot be causally con-
nected, in other words, cannot grow.

FIG. 3. Eight local configurations used to describe the dynamic
epidemic model on a chain of triangles. The empty sites are denoted
by white dots, while the sites occupied by a particle are denoted by
black dots.
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TheGT matrix has two different nonzero eigenvaluesl6

given by

l65 1
8 @724x23x26~12x!A1110x141x2#, ~7!

which are both strictly less than 1 except forx50 ~Fig. 4!.
Therefore, the dynamic epidemics can spread throughout the
chain only forxc

dyn50.
One should remark that theGT~sta! matrix can be easily

written. It has only one nonzero eigenvaluel512x giving
xc
(sta)50.
The technique applied above is thus useful for describing

dynamic epidemics on looped chains. More elaborate looped
lattices will lead to a larger number of local configurations.
We should warn that the configuration label or order is cru-
cial for an optimal description of the transfer matrices, i.e., in
order to have block-diagonal matrices.

C. Chain of squares

On a regular chain of squares, the basic set of local con-
figurations contains four sites~Fig. 5!. In order to describe
the dynamic epidemics on a chain looped with squares, there
are thus 24516 different possible configurations to examine.
However, this set is reduced to 12 configurations by symme-
try arguments~Fig. 5!.

After some algebra, theGT matrix of size 12312 is
found to have two nonzero eigenvaluesl6 given by

l65 1
8 @727x27x217x36~12x!2A1118x1129x2#.

~8!

The critical fraction of particles isxc
(dyn)50. One can easily

find that the correspondingGT~sta! for static particles has
only one nonzero eigenvalue

l512x2x21x3, ~9!

which gives a critical thresholdxc
(sta)50. Thel6 andl val-

ues as a function ofx are shown in Fig. 6.
One should emphasize that thel eigenvalue correspond-

ing to the static case is a nonlinear function ofx in contrast
to the simple chain and the chain looped with triangles. This

nonlinearity arises from the fact that the epidemics succes-
sively invade sites that are geometrically nonequivalent for
loop to loop spreading.

D. Critical exponents

One usually observes a power-law divergence for various
physical quantities near a percolation threshold, e.g., the lin-
ear sizej of the spreading cluster and the cluster massS,

j;~x2xc!
2n ~10!

and

S;~x2xc!
2g ~11!

FIG. 4. Two nonzero eigenvaluesl6 of GT as a function of the
fractionx of particles on a chain of triangles. The eigenvalue for the
static case is also illustrated.

FIG. 5. Twelve local configurations used to describe the dy-
namic epidemic model on a chain of squares. The empty sites are
denoted by white dots, while the sites occupied by a particle are
denoted by black dots.

FIG. 6. Two nonzero eigenvaluesl6 of GT as a function of the
fractionx of particles on the chain looped with squares. The eigen-
value for the static case is also illustrated.

3502 54N. VANDEWALLE AND M. AUSLOOS



abovexc . Assuming that the largest eigenvalue drives the
growth process, the mean numberg(r ) of sites lying on the
spreading cluster at a distancer from the initial site is

g~r !;l1
r . ~12!

Then the correlation lengthj, defined by

j25S (
r51

1`

r 2g~r !D S (
r51

1`

g~r !D 21

, ~13!

gives simplyj2;~12l1!22 using Eq.~12!. The mean massS
of finite spreading clusters~for x.xc! is defined by

S511(
r51

1`

g~r !, ~14!

which gives simplyS;~12l1!21 using relation~12!.
One can develop 12l6 in powers ofx aroundxc50 in

order to obtain the critical exponentsn andg. Notice that the
scaling lawsj2;~12l1!22 and S;~12l1!21 lead ton5g
for chains with or without loops.

For the simple chain,n5g51 for both static and dynamic
cases. For the chain of triangles, the transition is character-
ized byn5g51 in the static case sincel512x. The expan-
sion of l1 @from Eq. ~6!# gives n5g53 for the dynamic
epidemics. For the chain looped with squares, the exponents
are n5g51 in the static case butn5g53 in the dynamic
case.

III. STATIC AND DYNAMIC EPIDEMICS
ON UNLOOPED AND LOOPED TREES

A. Introduction

For the usual Bethe lattice with a branching ratez @13#,
we found a critical particle fractionxc

(dyn)5(z221)/z2 much
larger than the static case, wherexc

(sta)5(z21)/z. The criti-
cal exponents for dynamic epidemics were found to beg51
andn51 as in the static case.

On Bethe lattices and on more general trees, a special role
is played by the exponentn defined with Eqs.~10!, ~12!, and
~13! @14#. This exponent characterizes the divergence of the
correlation length along the tree, also called the chemical
space. In a truly Euclidian distance, the coherence length
diverges with an exponentñ5n/2 above the so-called critical
dimension@14#.

Since critical exponents for dynamic percolation seem to
be sensitive to the presence of loops on a chain, it is of
interest to look at trees with loops. For simplicity, we restrict
our discussion toz52 trees@Figs. 7~a!–7~d!# with different
fractionsw of trapping sites:~a! thez52 Bethe lattice~w50!,
~b! a tree for which one branch out of two is a triangle~w5
1
2!, ~c! a tree of triangles~w52

3!, and ~d! a tree of squares
joining at corners~w54

5!. For convenience, we will call I and
II the trees looped with triangles having a fractionw of trap-
ping sites12 and

2
3, respectively.

B. Tree looped with triangles

1. Tree of type I

For the tree of triangles shown in Fig. 7~b! ~w51
2!, the

local configurations contain four sites as schematically

FIG. 7. Four different types of hierarchical
trees with a branching ratez52: ~a! the Bethe
lattice, ~b! a tree for which one branch over two
is looped with a triangle,~c! a tree of triangles,
and ~d! a tree of squares.
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drawn in Fig. 8~b!. In order to describe the dynamic epi-
demic model on such a tree, there are thus 24516 different
possible configurations. One cannot reduce this set of 16
configurations since the local configurations have no symme-
try. Similarly to the above theoretical developments, one can,
however, enumerate all possible configurations and pro-
cesses occurring on the tree. Thereafter, one can write the
16316 T matrix describing the dynamical process and the
16316G matrix describing the occurrence of the next local
configurations. One should note that the sum of the elements
of each column ofG is now equal to 2 instead of 1 in Sec. II
since each local configuration is followed byz52 next pos-
sible configurations.

Even though it was possible to write down the 16316GT
matrix, it was not possible to extract analytically the eigen-
values. We found numerically that two different eigenvalues
have nonzero values for the dynamic epidemics. As above,
we call theml1 andl2 with l1>l2 . These eigenvalues are
shown in Fig. 9 as a function of the particle fractionx. We
observe that forx50 the largest eigenvaluel1 is 2. In ab-
sence of particles, the tree can be totally invaded such that
l1 corresponds to the branching rate of the tree@see Eq.
~12!#. As the mobile particle fractionx increases, thel1

eigenvalue decreases down to zero atx51 when the growth
is impossible. We found numericallyxc

(dyn)'0.812 for such a
type of looped tree. Belowxc

(dyn), the invasion propagates
indefinitely. Abovexc

(dyn), the epidemics is blocked.
Moreover, we have numerically analyzed howl1 reaches

1 nearxc
(dyn). We found that~12l1! scales asux2xc

(dyn)u .
Thus g5n51 for the dynamic epidemics on such a tree
looped with triangles.

The static case is trivially solved because theT matrix
reduces to a diagonalT~sta! matrix. We found analytically that
the 16316 GT matrix has only one nonzero eigenvalue
l52~12x!, which is also drawn in Fig. 9. Thusxc

(sta)5 1
2,

corresponding to the static epidemic case on the usual Bethe
lattice. This gives alsog5n51. Thus the critical exponents

describing the divergence of the cluster massS and correla-
tion lengthj near the thresholdxc have the same values~51!
for both static and dynamic epidemics on a tree looped with
triangles of type I.

2. Tree of type II

For the tree made of triangles~w53
2! joining by a vertex

as shown in Fig. 7~c!, the local basic configurations contain
five sites as schematically drawn in Fig. 8~c!. In order to
describe the dynamic epidemic model on such a tree, there
are 25532 different possible configurations. One can reduce
this set to 20 configurations by symmetry. One can still enu-
merate all possible configurations and processes occurring on
the tree and write the 20320 GT matrix. However, it was
not possible to extract analytically the eigenvalues of theGT
matrix. We found numerically that two different eigenvalues
have nonzero values for the dynamic epidemics. Similarly to
previous results, we call theml1 for the largest one andl2

for the second one. These eigenvalues are plotted in Fig. 10
as a function ofx. As x increases from zero to 1,l1 de-
creases from 2 to zero. We found numericallyxc

(dyn)'0.849
for looped trees of type II. This value is a little bit larger than

FIG. 8. Small portions of the trees of Fig. 7 that are used as
local configurations for studying the dynamic epidemic model:~a!
the Bethe lattice,~b! a tree for which one branch over two is looped
with a triangle,~c! a tree of triangles, and~d! a tree of squares.

FIG. 9. Two nonzero eigenvaluesl6 of GT as a function of the
fraction x of particles on the tree of triangles of type I@the tree of
Fig. 7~b!#. The eigenvalue for the static case is also illustrated.

FIG. 10. Two nonzero eigenvaluesl6 of GT as a function of
the fractionx of particles on the tree of triangles of type II@the tree
of Fig. 7~c!#. The eigenvalue for the static case is also illustrated.

3504 54N. VANDEWALLE AND M. AUSLOOS



the critical value 0.812 found numerically for trees of type I.
Moreover, we have numerically analyzed howl1 reaches 1
nearxc

(dyn). We find g5n51 for the dynamic epidemia on
such a tree of triangles.

In the static case, the 20320GT~sta! matrix has only one
nonzero eigenvaluel52~12x! as drawn in Fig. 10. This
eigenvalue is equivalent to that of type I. Thusxc

(sta)5 1
2 and

g5n51.
Thus the critical exponents describing the divergence of

the cluster massS and correlation lengthj near the threshold
xc have the same values~51! for both static and dynamic
epidemia on a tree looped with triangles of type II.

C. Tree looped with squares

For a tree made of squares~w54
5! as shown in Fig. 7~d!,

the local configurations contain seven sites as schematically
drawn in Fig. 8~d!. The dynamic epidemics on such a tree
can be described from 275128 different possible local con-
figurations. One can reduce this set to 42 configurations by
symmetry. One can enumerate all possible configurations
and dynamical processes occurring on these 42 configura-
tions and write the corresponding 42342 GT matrix. We
found numerically that two different eigenvaluesl1 andl2

have nonzero values for the dynamic epidemics~Fig. 11!. As
the particle fraction increases from zero to 1,l1 decreases
from 2 to zero. We found numerically thatxc

(dyn)50.731.
This threshold is close to the dynamical case on the usual
Bethe lattice with a branchingz52. Even though the tree
looped with squares contains a larger fraction of trapping
sites, i.e.,w54

5, than trees looped with triangles, the thresh-
old xc

(dyn) is about 10% lower than that for the trees looped
with triangles. We found numerically thatg5n51 for the
dynamic epidemics on a tree looped with square.

The static case is recovered by reducing theT matrix to
T~sta!. We found numerically that the 42342GT matrix has
only one nonzero eigenvaluel as drawn in Fig. 11. The
latter eigenvalue isnot equivalent to the previous static ones
and has anonlinearbehavior. A threshold atxc

(sta)'0.403 is
numerically obtained. A numerical analysis of the behavior
of l near the thresholdxc

(sta) givesg5n51. Thus the critical

exponents describing the divergence of the cluster massS
and correlation lengthj near the thresholdxc have the same
values~51! for both static and dynamic epidemics on a tree
looped with squares.

IV. DISCUSSION

We have theoretically studied both dynamic and static
epidemic problems on chains and generalized trees, i.e., on
lattices with dimensionality one and infinity, respectively.
On such lattices, loops have been considered allowing for
engulfment, i.e., particle trapping. All theoretical results
found hereinbefore are summarized in Tables I and II.

The epidemics have been described through a ‘‘transfer-
growth-matrix method.’’ The largest eigenvalue of the epi-
demic ‘‘evolution matrix’’ GT is a measure of the correla-
tion length of the growing system@see Eqs.~12! and ~13!#.
We found that a dynamical interaction between the invasion
and the random medium changes the value of the critical
threshold above which the invasion is stopped. For static
epidemics corresponding to the percolation problem, only
one eigenvalue is finite, but it is not a linear function of the
particle fractionx for chains and trees looped with squares.
The nonlinear effect is understood as resulting from the fact
that the epidemics has to invade alternatively nonequivalent
sites in order to spread throughout the lattice. For dynamic
epidemics, two eigenvalues are finite and both are nonlinear
functions of the particle fractionx. This is true for all the
lattices examined, except for the simple linear chain case.
The nonlinearity is due to particle pushing effects and re-
flects some organization of the random medium.

The thresholds below which the epidemics percolate have
been calculated on the various lattices and for both static and
dynamical processes. On all studied chains, the thresholds
for both static and dynamic epidemics are equal to zero.
However, we found nonzero threshold values on trees. On
such structures, we found that the threshold for the dynamic
epidemics is much higher than the threshold of the static
epidemics (xc

(sta),xc
(dyn)). We observed a threshold differ-

FIG. 11. Two nonzero eigenvaluesl6 of GT as a function of
the fractionx of particles on the tree looped with squares@the tree
of Fig. 7~d!#. The eigenvalue for the static case is also illustrated.

TABLE I. Percolation thresholdsxc
~sta! and xc

~dyn! for, respec-
tively, static and mobile particles on various lattices. For compari-
son between similar structures, the fractionw of sites that are pos-
sible candidates for trapping is given.

Lattice d w xc
(sta) xc

(dyn)

simple chain 1 0 0a 0b

chain of triangles 1 1
2 0b 0b

chain of squares 1 2
3 0b 0b

square 2 1 0.413c 0.565d

Bethe lattice ` 0 (z21)/za (z221)/z2 e

tree looped with triangles I ` 1
2

1
2
b 0.812b

tree looped with triangles II ` 2
3

1
2
b 0.849b

tree looped with squares ` 4
5 0.403b 0.731b

aExact result; see@12#.
bExact result obtained in this paper.
cNumerical value obtained in@4#.
dNumerical value obtained in@10#.
eExact result obtained in@15#.
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ence of up to 30% in the critical particle fraction between the
static and dynamic cases.

In the case of trees looped with triangles, two different
structures have been studied. These trees have different frac-
tionsw of sites that are candidates for particle trapping. The
percolation thresholds for static epidemics are the same on
both types of trees. However, a small difference of about 3%
was found between the dynamic epidemic thresholds of both
cases. The tree of type II having a larger fractionw has a
larger threshold. The fractionw of sites candidate for particle
trapping on a tree is thus a relevant parameter for the thresh-
old value of a dynamic epidemics. One should note that the
tree looped with squares has the largest valuew54

5, but has a
lower xc

(dyn) value than the trees looped with triangles. It is
obvious that the tree structure is relevant for determining the
threshold value.

For usual critical phenomena, the threshold values do
change from lattice to lattice but the critical exponents de-
pend only on the dimensionality of the considered lattices. In
order to test a possible universality for the dynamic epidem-
ics, the critical exponents characterizing respectively the cor-
relation length divergence and the cluster mass divergence
near the threshold have been determined. For static epidem-
ics, universality is effectively recovered since the exponents
depend only on the lattice dimensionality. However, for dy-
namic epidemics, critical exponents can take different values
in one dimension depending on the looped character of the
chains. One should note that the universality of dynamic epi-
demics is recovered ford.1. Moreover, the values of the
critical exponents ford.1 are found to be unchanged be-
tween static and dynamic epidemics. The behavior is thus

‘‘superuniversal’’ ford.1 in contrast withd51 lattices.
Thus, for both static and dynamic epidemics, a great va-

riety of behaviors~linearity or nonlinearity of the eigenval-
ues as a function ofx, percolation threshold values, and criti-
cal exponents! has been found here depending on
nonuniversal parameters such as the looped character of the
lattice, the fraction of trapping sitesw, and the structure of
the loop itself.

V. CONCLUSION

It should be pointed out that, to our knowledge, this is the
first time thatlooped treesare considered in theoretical de-
velopments for percolationlike studies. The major finding is
the lack of universality for dynamic epidemics on one-
dimensional lattices. We found that the critical exponentsg
and n depend on the looped or unlooped character of the
chain. This result was unexpected. On trees,g andn are not
affected by the introduction of a dynamical interaction and
loops.
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