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Static and dynamic epidemics on looped chains and looped trees
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The dynamic epidemic modéN. Vandewalle and M. Ausloos, J. Phys.29, 309 (1996] considers the
growth of a cluster in a medium containing a fractionf mobile “particles” that are pushed by a propagation
front. This model is exactly solved here on various chains and trees that contain loops following an “evolution
matrix” method. The exact value for the percolation threshqldnd the critical exponents are calculated for
static and mobile particles, respectively. Surprisingly, the mobile character of the particles affects the values of
the critical exponents on chains but not on trees. Thus there is a nonuniversal behavior for dynamic epidemics
even ond=1 lattices.[S1063-651X96)06910-3

PACS numbe(s): 64.60.Ak, 05.40+]

[. INTRODUCTION origins for the transition in the “dynamic epidemic” and in
the “static epidemic” model. Surprisingly, the critical expo-
In order to study the case of a far from equilibrium inva- nents for the transition with mobile particles were, however,
sion of a phase in a random medium, various simple modelfund to be equivalent to those of two-dimensional percola-
have been imagined such as invasion perco|aﬁdﬂ] tion as for the case of an invaded static med[llrﬁ]
diffusion-controlled reactiofi2], forest fire[3], and epidemic In a recent theoretical workl3], we solved exactly this
models[4]. The percolation phenomenon theory generallydynamic epidemic model on the usual Bethe lattice for any
gives a useful framework for studying these models. Ondranching ratez. The Bethe lattice corresponds in some
usually searches for critical thresholds and critical exponent§ense to an infinite dimensionality network. Thus we found a
near percolation thresholds. Most of time, the critical expo-percolation threshola!®= (22— 1)/z? different from that
nent values depend only on the dimensionality of the underef the static case, i.engta)z (z—1)/z. We found that critical
lying lattice. exponents on the Bethe lattice for the static and the dynamic
Less attention has been paid to the cases in which a dynedium problem were equivalent. This suggested that the
namical interaction exists between the spreading phase amhenomenology of the phenomenon was well described by
the medium. One can cite as an interesting example the caseir theoretical developmenf3].
of particles that are pushed by a solid-liquid interf46¢ However, one should remark that the usual Bethe lattice
Related to this kind of problem, let us mention bubHlés  contains no loop as in ordinary lattices. Therefore, particles
and biological cell§7] pushed by ice-water fronts and incor- cannot be trapped by the growing cluster on the Bethe lattice.
poration of secondary phases in type-ll supercondu¢®lrs The aim of this paper is to provide an exact solution of the
Such a multiparticle problem is of great interest because oftatic and dynamic epidemic model on various lattices with
the presence of impurities that are finally trapped. The imputoops thus allowing for trapping by engulfment. Chains with
rities can influence the physical properties of the mediumloops and looped trees, i.e., trees for which a bramh
For example, the ¥8aCuQ particles left after an incom- bond is replaced by a looda triangle or a squayeare
plete peritectic reaction act as pinning centers for the vortexonsidered below. Both lattices correspond to the one- and
motion in the YBaCu,0O;_ 5 superconducting cerami¢8]. infinite-dimensional cases, respectively. Notice that the infi-
Recently, we have introduced a dynamic epidemic modehite dimensionality of trees is only asymptotic as discussed
[10] for describing such a spreading of a “fluid” in a me- in [12] by Stauffer and Aharony for the case of the Bethe
dium containing a fractiox of mobile particles. This model lattice. To our knowledge, it is the first time that “looped
assumes a repulsive interaction between the growing frorntees” are considered in theoretical developments for perco-
and the particles. The pushing of such particles leads to mtionlike studies.
nontrivial clustering of particles alongand behing the In the next section the case of unlooped and looped chains
growing front[11]. The process sometimes leads to the trapwill be explicitly solved as an illustration of the theoretical
ping of particle aggregates behind the front as in an engulftechnique used in this paper. In Sec. lll the theoretical results
ment process when the front overcomes the impurities. Owill be presented for various looped trees. We will discuss
the square lattice, a transition between unlimited and limitedesults in Sec. IV before drawing a conclusion in Sec. V.
growth was found to take place at some particle fraction
x?;0.560t0.005, i.e.., mugh Iar_ger than the threshold value Il. STATIC AND DYNAMIC EPIDEMICS
X¢ ~0.413 of the epldem@tatlc_partlcle m_odel. Our'pre— ON UNLOOPED AND LOOPED CHAINS
vious work[10] on the square lattice underlined the different
As an illustration of the technique used herein, we will
solve in this section the simplest chain cases. In Fig®—-1
*Electronic address: vandewal@gw.unipc.ulg.ac.be 1(c) three different chains are presentéa):the first one is a
"Electronic address: ausloos@gw.unipc.ulg.ac.be conventional chain(b) the second one is a looped chain with
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a) -O0—e

*— configuration(4) blocks the growth since the particle on the
left of the configuration cannot move. Moreover, for con-
figuration 3, the invasion on the left site pushes the particle
on the empty next-nearest-neighboring site, leading to a 2
configuration. The dynamical process corresponding to the

(b) invasion of the left-hand site is thus described by the44

transfer matrix

Q

0
0
ol M

X

—

|
O OO
O Opr O
O O O

0

where each elemertt; is the probability to obtain the con-
FIG. 1. Three different types of chaing) a simple chain(b) a  figuration labeled invading the configuration labelgdsuch
chain of triangles, andc) a chain of squares. The empty sites are that|i>=2].Tij |j). The last column off contains only zeros
denoted by white dots, while the sites occupied by a particle argince this configuration does not evolve. Once the dynamical
denoted by black dots. process T) is applied, one has to know the probability to
find the next configuration on the chain. This is simply given
triangles, andc) the third one is a looped chain with squares. py the growth probability matrix
The empty sites are denoted by white dots, while the sites

occupied by a particle are denoted by black dots. One should 1-x O 1-x O
note that the fractiornp of sites that are candidates for par- X 0 X 0
ticle trapping takes different values on these lattices. For the G=| o 1-x 0 1-x|" (2
simple chain case, the fractianis zero. However, the chain 0 X 0 X

looped with trianglegFig. 1(b)] has ¢=3, while the chain
looped with square$Fig. 1(c)] has ¢=5 because particles where each elemei@;; is the average number of configura-

can be trapped behind the propagation front. tionsi next to a configuration. The growth process is thus
well described by the iteration of the mat&T. This matrix
A. Simple chain has two degenerate nonzero eigenvalugese.,
On a simple one-dimensional chain, the dynamic epi- A=(1—X). 3)

demic rule is the following. Let a fractior of sites be oc-

cupied by particles and for convenience let the front go froniThe critical pointxff’y”) is when the largest eigenvalue is
left to right. The cluster growth goes as follows. At eachequal to 1. The spreading of the invading cluster through the
growth step, if a nearest neighboring site on the right ischain is thus only possible in the absence of impurities
empty, the site is invaded. However, if this site contains g x(™"=0). This is similar to the trivial case of static par-
particle, the particle is pushed on the next-nearesttcles, i.e., to percolation on a simple chit?]. One should

neighboring site if the latter is empty. If this next-nearest-note that the case of static particles is recovered faf a
neighboring site contains a particle, the growth is blocked. Inmatrix that is reduced to

this case, the invading cluster cannot percolate throughout

the whole chain. 1 0 0 O

In order to describe this dynamical process of cluster 0 00O
spreading and particle pushing, it is sufficient to consider a TR = 0 0 0 O (4)
set of four local configuration§-ig. 2). If the invading clus- 000 0O

ter arrives on the left of the configurations, it could invade
the first three Configurations of Flg 2. However, the |aStsuch that th@T(Sta matrix has 0n|y one nonzero eigenva]ue
A=1—x giving x5¥=0.
1 o0—0— T_he above development is somewhat trivia_l on a simple
chain but can be applied to more elaborate lattices. We solve
the epidemic spreading on looped chaiRgy. 1) next.

B. Chain of triangles

Figure 3 presents the eight local configurations for the
4 description of the epidemic propagation on the chain with
- triangle loopg[Fig. 1(b)]. Each basic configuration contains

three sites, the one at the top being the candidate on which

FIG. 2. Four local configurations used to describe the dynamicathe particle trapping can take place. The invasion of the local
process for the epidemics on a simple chain. The empty sites aionfigurations corresponds to growth steps depending on the

denoted by white dots, while the sites occupied by a particle aréocal configurations, i.e., on the number of particles lying on

denoted by black dots. the local configuration.
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(iii) A two-stage dynamic invasion as for configuration 3
can also lead to particle trapping on the top site. This engulf-
ment occurs with a probability (T;3=3), while the particle
pushiqg to the right-hand site occurs with a probabifty
(Taz=2).

(iv) The two-step dynamic invasion of configuration
4 does not affect this local configuration since it leaves
unchanged the particle on the right-hand site. Thys=1.

(v) Let the particle lying on the left-hand site of configu-

3 5 ration 5 being pushed to the right-hand site by the invading
cluster. The other particle lying on the top site remains there
since the right-hand site becomes occupied. This leads to
T75:1.

A A (vi) The particle lying on the left-hand site of configura-
tion 6 can be pushed only to the top site, since the right-hand
site is occupied. This leads to the stable configuration 7 and

: , . . T,6=1.

FIG. 3. Eight local configurations used to describe the dynamlcd (vii) In configuration 7 the epidemics can invade the left-

epidemic model on a chain of triangles. The empty sites are denot d site. but th idemi . de th . :
by white dots, while the sites occupied by a particle are denoted be?an S't_e' Ut,t € epl lecs cannot invade the top site since
he particle lying there is blocked. Thds,=1.

black dots. s . .
(viii) Configuration 8 cannot be invaded. Thus the last
o ) ) column of T contains only zeros.

tained in general. . probability to obtain the next ones are thus given by
(i) Let the epidemics invade the left-hand site of the con-

figuration 1. Once this site is invaded, the spreading cluster
will invade either the “top site”(see Fig. 3 with a probabil-

ity 3 or the “right-hand site” with a probabilitys at the next
step. In both cases, configuration 1 remains unchanged by
the dynamical invasion, whendg,=1.

(i) Let the epidemics invade configuration 2 by pushing
the particle either to the top site or to the right-hand site both T=
with a probability 3. However, two situations are possible
after this step. The particle pushed on the top site can be
trapped by engulfment if the invasion front overpasses the
particle. This occurs with a probability (Tg,=3%). But the
particle can be pushed to the right-hand site in the next step.
This second final configuration occurs with a probabifity
(Ta=3). and
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(1-x)2 (1—-x)? (1—-x)? 0 (1—x)2 0 0 0
0 0 0 (1—x)2 0 (1-x)2 (1-x)2 (1—-x)2
X(1-%x) X(1-Xx) Xx(1—x) 0 X(1—x) 0 0 0
X(1-x) X(1-x) Xx(1-x) 0 X(1—x) 0 0 0
G=| o 0 0 x(1-x) 0  x(1-% x(1-x) x(1-x) |- 6)
0 0 X(1—X) 0 X(1-%x) X(1-x) Xx(1—x)
x? x? 0 x? 0 0 0
0 0 0 X2 0 X2 X2 NG

One should remark that the elements of the maffix T, which are zeros. The sum of the elements of each
can take noninteger values. This is a characteristic otolumn of G is also 1 since each local configuration is
lattices with loops on which trapping occurs with connected to only one configuration on a chain. Notice
noninteger probabilities. The sum of the elements of eaclalso that numerous elements &f are zeros. This means
column of T is 1, expressing the normalization of the prob-that some local configurations cannot be causally con-
abilities except for the elements of the last column ofnected, in other words, cannot grow.
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FIG. 4. Two nonzero eigenvaluas. of GT as a function of the 4
fractionx of particles on a chain of triangles. The eigenvalue for the
static case is also illustrated.
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The GT matrix has two different nonzero eigenvalues

given by FIG. 5. Twelve local configurations used to describe the dy-

namic epidemic model on a chain of squares. The empty sites are
N.=L[7—4x—3x%+(1—X) \/m]’ ) ggzgtgg E;/ Q,’.V?ctf doloottss while the sites occupied by a particle are

which are both strictly less than 1 except for0 (Fig. 4).

Therefore, the dynamic epidemics can spread throughout theonlinearity arises from the fact that the epidemics succes-

chain only forxgy”:O. sively invade sites that are geometrically nonequivalent for

One should remark that th@ T matrix can be easily loop to loop spreading.
written. It has only one nonzero eigenvalne1—x giving
X§Sta)=0.

The technique applied above is thus useful for describing
dynamic epidemics on looped chains. More elaborate looped One usually observes a power-law divergence for various
lattices will lead to a larger number of local configurations. physical quantities near a percolation threshold, e.g., the lin-
We should warn that the configuration label or order is cru-ear size¢ of the spreading cluster and the cluster m&ss
cial for an optimal description of the transfer matrices, i.e., in B
order to have block-diagonal matrices. E~(X=x) " (10)

D. Critical exponents

C. Chain of squares and

On a regular chain of squares, the basic set of local con-
figurations contains four siteig. 5. In order to describe S—(Xx—x.)"7 (11)
the dynamic epidemics on a chain looped with squares, there ¢
are thus 2=16 different possible configurations to examine.

However, this set is reduced to 12 configurations by symme- 1.0
try argumentgFig. 5).

T

After some algebra, th&T matrix of size 1X12 is i —
found to have two nonzero eigenvalues given by 08 Y
[72] .
Ao =7 Tx—TX2+7x3+ (1—x)2\J1+ 18+ 129%7]. 8 sk . N T static |
<
(8 % \
The critical fraction of particles ig{¥™=0. One can easily 5 04r AN 7
find that the correspondin@ T®® for static particles has
only one nonzero eigenvalue 02 N -
A=1-x—x?+x5, C) 0.0 I >
S N t 0.0 0.2 0.4 0.6 0.8 1.0
which gives a critical threshol®*®=0. The).. and\ val- X
ues as a function of are shown in Fig. 6.
One should emphasize that theeigenvalue correspond-  FIG. 6. Two nonzero eigenvaluas of GT as a function of the

ing to the static case is a nonlinear functionxai contrast  fractionx of particles on the chain looped with squares. The eigen-
to the simple chain and the chain looped with triangles. Thissalue for the static case is also illustrated.
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(j)‘< (C) %

abovex;. Assuming that the largest eigenvalue drives the
growth process, the mean numiggrr) of sites lying on the

spreading cluster at a distancdrom the initial site is

g(r)~A%. (12
Then the correlation length defined by
+ o +o -1
gz:(rEl rzg(r>)(;1 g(r)) , (13

gives simply&®~(1—\,) 2 using Eq.(12). The mean masS
of finite spreading cluster§or x>x.) is defined by

+ o

S=1+21 g(r), (19

which gives simplyS~(1—\.) ! using relation(12).

One can develop 1A. in powers ofx aroundx.=0 in
order to obtain the critical exponentsand y. Notice that the
scaling laws&~(1—\,) 2 and S~(1—\,) ! lead tov=1y
for chains with or without loops.

FIG. 7. Four different types of hierarchical
trees with a branching rate=2: (a) the Bethe
lattice, (b) a tree for which one branch over two
is looped with a triangle(c) a tree of triangles,
and(d) a tree of squares.

Ill. STATIC AND DYNAMIC EPIDEMICS
ON UNLOOPED AND LOOPED TREES

A. Introduction

For the usual Bethe lattice with a branching ratgl3],
we found a critical particle fractior®™"=(z>—1)/z? much
larger than the static case, whed§®=(z—1)/z. The criti-
cal exponents for dynamic epidemics were found toybel
andv=1 as in the static case.

On Bethe lattices and on more general trees, a special role
is played by the exponemtdefined with Eqs(10), (12), and
(13) [14]. This exponent characterizes the divergence of the
correlation length along the tree, also called the chemical
space. In a truly Euclidian distance, the coherence length
diverges with an exponemt=1/2 above the so-called critical
dimension[14].

Since critical exponents for dynamic percolation seem to
be sensitive to the presence of loops on a chain, it is of
interest to look at trees with loops. For simplicity, we restrict
our discussion t@=2 trees[Figs. 1a)—7(d)] with different
fractionse of trapping sites(a) the z=2 Bethe latticg¢=0),

(b) a tree for which one branch out of two is a triange=
3), (c) a tree of trianglese=3), and (d) a tree of squares
joining at cornerge=2). For convenience, we will call | and
Il the trees looped with triangles having a fractigrof trap-

For the simple chainy=y=1 for both static and dynamic ping sites; and 3, respectively.
cases. For the chain of triangles, the transition is character-

ized by v=7y=1 in the static case sinde=1—x. The expan-
sion of A, [from Eq. (6)] gives v=v=3 for the dynamic

epidemics. For the chain looped with squares, the exponents

are v=y=1 in the static case but=y=3 in the dynamic
case.

B. Tree looped with triangles
1. Tree of type |

For the tree of triangles shown in Fig(b} (¢=3), the
local configurations contain four sites as schematically
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Eigenvalues

FIG. 9. Two nonzero eigenvalu@s. of GT as a function of the
fraction x of particles on the tree of triangles of typéthe tree of
Fig. 7(b)]. The eigenvalue for the static case is also illustrated.

FIG. 8. Small portions of the trees of Fig. 7 that are used as . .
local configurations for studying the dynamic epidemic mo¢al:  describing the divergence of the cluster m&sand correla-

the Bethe lattice(b) a tree for which one branch over two is looped tion lengthé near the thresholg; have the same valugs-1) _
with a triangle,(c) a tree of triangles, an@) a tree of squares. for both static and dynamic epidemics on a tree looped with

triangles of type I.

drawn in Fig. 8b). In order to describe the dynamic epi-
demic model on such a tree, there are thlis 16 different 2. Tree of type II
possible configurations. One cannot reduce this set of 16 For the tree made of trianglég=2) joining by a vertex
configurations since the local configurations have no symmess shown in Fig. &), the local basic configurations contain
try. Similarly to the above theoretical developments, one carfjye sites as schematically drawn in Fig(cB In order to
however, enumerate all possible configurations and progescribe the dynamic epidemic model on such a tree, there
cesses occurring on the tree. Thereafter, one can write thge $=32 different possible configurations. One can reduce
16x16 T matrix describing the dynamical process and thethjs set to 20 configurations by symmetry. One can still enu-
16x16 G matrix describing the occurrence of the next local merate all possible configurations and processes occurring on
Conﬁgurations. One should note that the sum of the elementﬁe tree and write the 2020 GT matrix. However, it was
of each column of5 is now equal to 2 instead of 1 in Sec. Il not possible to extract analytically the eigenvalues ofGie
since each local configuration is followed by-2 next pos-  matrix. We found numerically that two different eigenvalues
sible configurations. have nonzero values for the dynamic epidemics. Similarly to
Even though it was possible to write down theXBEGT  previous results, we call them, for the largest one and_
matrix, it was not possible to extract analytically the eigen-for the second one. These eigenvalues are plotted in Fig. 10
values. We found numerica”y that two different eigenVaerSaS a function ofx. As X increases from zero to I\Jr de-
have nonzero values for the dynamic epidemics. As abovgyeases from 2 to zero. We found numericad[j}y“)wo.849

we call themA, and\_ with A, =\ _. These eigenvalues are ¢, |ooped trees of type II. This value is a little bit larger than
shown in Fig. 9 as a function of the particle fractionWe

observe that fox=0 the largest eigenvalug, is 2. In ab-

. i 2.0
sence of particles, the tree can be totally invaded such that ‘—M
A, corresponds to the branching rate of the tfsee Eq. Y
(12)]. As the mobile particle fractiorx increases, the 15 k- N St;tic

eigenvalue decreases down to zerxatl when the growth
is impossible. We found numericalig®™~0.812 for such a
type of looped tree. Belovx(cdy”), the invasion propagates
indefinitely. Abovex!™", the epidemics is blocked.

Moreover, we have numerically analyzed haw reaches .
1 nearx™". We found that(1—\,) scales agx—x{®"|. 0.5 — T
Thus y=»=1 for the dynamic epidemics on such a tree —
looped with triangles. ~—

The static case is trivially solved because thamatrix 0.0
reduces to a diagon@l®®® matrix. We found analytically that
the 16x16 GT matrix has only one nonzero eigenvalue
A=2(1-x), which is also drawn in Fig. 9. Thus{®®=3, FIG. 10. Two nonzero eigenvaluas of GT as a function of
corresponding to the static epidemic case on the usual Bethie fractionx of particles on the tree of triangles of type/the tree
lattice. This gives alsay=v=1. Thus the critical exponents of Fig. 7(c)]. The eigenvalue for the static case is also illustrated.

Eigenvalues
o

0.0 - 02 0.4 0.6 0.8 1.0
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TABLE |. Percolation thresholds™? and x™ for, respec-

2.0 . ) . . . . .
' tively, static and mobile particles on various lattices. For compari-
— A son between similar structures, the fractiprof sites that are pos-
1s L S sible candidates for trapping is given.

--------- static

g Lattice d ¢ xi x{m
<
% simple chain 1 0 ) o°
.80 chain of triangles 13 o° o°
- chain of squares 12 o° o°
square 2 1 0413 0.565'
Bethe lattice o 0 (z-1)/2 (22-1)Iz%¢
D tree looped with triangles | o 3 i 0.812
~0.0 0.2 0.4 0.6 0.8 1.0 tree looped with triangles Il o 3 3o 0.849
X tree looped with squares &  0.403 0.73P

8Exact result; se¢12].

PExact result obtained in this paper.
°Numerical value obtained if¥].
dNumerical value obtained ifL0].
®Exact result obtained ifl5].

FIG. 11. Two nonzero eigenvaluas. of GT as a function of
the fractionx of particles on the tree looped with squafése tree
of Fig. 7(d)]. The eigenvalue for the static case is also illustrated.

the critical value 0.812 found numerically for trees of type I.
Moreover, we have numerically analyzed haw reaches 1 o .
nearx™". We find y=v=1 for the dynamic epidemia on €xponents describing the divergence of the cluster nsass

such a tree of triangles. and correlation lengtl§ near the threshold, have the same
In the static case, the 220 GT®® matrix has only one Vvalues(=1) for both static and dynamic epidemics on a tree
nonzero eigenvalua=2(1—x) as drawn in Fig. 10. This looped with squares.
eigenvalue is equivalent to that of type I. Thx[§®= 1 and
y=v=1. IV. DISCUSSION
Thus the critical exponents describing the divergence of
the cluster masS and correlation lengtlj near the threshold
X; have the same valuds=1) for both static and dynamic
epidemia on a tree looped with triangles of type II.

We have theoretically studied both dynamic and static
epidemic problems on chains and generalized trees, i.e., on
lattices with dimensionality one and infinity, respectively.
On such lattices, loops have been considered allowing for
engulfment, i.e., particle trapping. All theoretical results
found hereinbefore are summarized in Tables | and II.

For a tree made of squarég=32) as shown in Fig. (@), The epidemics have been described through a “transfer-
the local configurations contain seven sites as schematicallyrowth-matrix method.” The largest eigenvalue of the epi-
drawn in Fig. &d). The dynamic epidemics on such a tree demic “evolution matrix” GT is a measure of the correla-
can be described from’2128 different possible local con- tion length of the growing systefsee Eqs(12) and (13)].
figurations. One can reduce this set to 42 configurations byve found that a dynamical interaction between the invasion
symmetry. One can enumerate all possible configurationgnd the random medium changes the value of the critical
and dynamical processes occurring on these 42 configurghreshold above which the invasion is stopped. For static
tions and write the corresponding %22 GT matrix. We  gpidemics corresponding to the percolation problem, only
found numerically that two different eigenvalues andA_ e eigenvalue is finite, but it is not a linear function of the
have nonzero values for the dynamic epidentiig. 11. AS  particle fractionx for chains and trees looped with squares.
the particle fraction increases from zero to”; decreases The ponlinear effect is understood as resulting from the fact
from 2 to zero. We found numerically thaf®"=0.731.  that the epidemics has to invade alternatively nonequivalent
This threshold is close to the dynamical case on the usuafites in order to spread throughout the lattice. For dynamic
Bethe lattice with a branching=2. Even though the tree epidemics, two eigenvalues are finite and both are nonlinear
looped with squares contains a larger fraction of trappinGunctions of the particle fractiox. This is true for all the
sites, i.e.,¢=3, than trees looped with triangles, the thresh-|attices examined, except for the simple linear chain case.
old x{"" is about 10% lower than that for the trees loopedThe nonlinearity is due to particle pushing effects and re-
with triangles. We found numerically that=v=1 for the flects some organization of the random medium.
dynamic epidemics on a tree looped with square. The thresholds below which the epidemics percolate have

The static case is recovered by reducing Thenatrix to  been calculated on the various lattices and for both static and
T®®. We found numerically that the 4242 GT matrix has  dynamical processes. On all studied chains, the thresholds
only one nonzero eigenvalue as drawn in Fig. 11. The for both static and dynamic epidemics are equal to zero.
latter eigenvalue isot equivalent to the previous static ones However, we found nonzero threshold values on trees. On
and has aonlinearbehavior. A threshold at{®®~0.403 is  such structures, we found that the threshold for the dynamic
numerically obtained. A numerical analysis of the behaviorepidemics is much higher than the threshold of the static
of X near the threshold*®® gives y=v=1. Thus the critical ~epidemics ("?<x®"). We observed a threshold differ-

C. Tree looped with squares
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TABLE Il. Critical exponentsy and v describing the divergence of the cluster mass and the correlation
length, respectively, near the threshold for static and dynamic epidemics on various lattices.

Lattice d Static Static Dynamic Dynamic
v Y v Y
simple chain 1 3 12 1° 1°
chain of triangles 1 B 1° 3 3P
chain of squares 1 b1 1° 3P 3P
square 2 3 $a 1.3%
Bethe lattice o 12 12 19 19
tree looped with triangles | o 1° 1° 1° 1°
tree looped with triangles II o 1° 1° 1° 1°
tree looped with squares o 1° 1° 1° 1°

3Exact result: se¢12].

PExact result obtained in this paper.
“Numerical value obtained ifL0].
dExact result obtained ifL3].

ence of up to 30% in the critical particle fraction between the“superuniversal” ford>1 in contrast withd=1 lattices.

static and dynamic cases. Thus, for both static and dynamic epidemics, a great va-
In the case of trees looped with triangles, two differentriety of behaviors(linearity or nonlinearity of the eigenval-

structures have been studied. These trees have different frages as a function of, percolation threshold values, and criti-

tions ¢ of sites that are candidates for particle trapping. Thecal exponenis has been found here depending on

percolation thresholds for static epidemics are the same omonuniversal parameters such as the looped character of the

both types of trees. However, a small difference of about 3%attice, the fraction of trapping siteg, and the structure of

was found between the dynamic epidemic thresholds of botthe loop itself.

cases. The tree of type Il having a larger fractiprhas a

larger threshold. The fractiop of sites candidate for particle

trapping on a tree is thus a relevant parameter for the thresh-

old value of a dynamic epidemics. One should note that the V. CONCLUSION

tree looped with squares has the largest valed, but has a

lower xgdy“) value than the trees looped with triangles. It is

obvious that the tree structure is relevant for determining th

It should be pointed out that, to our knowledge, this is the
first time thatlooped treesare considered in theoretical de-
?/elopments for percolationlike studies. The major finding is
threshold value.__ the lack of universality for dynamic epidemics on one-

For usual critical phenomena, the threshold values d(Eiimensional lattices. We found that the critical exponents

change from lattice to lattice but the critical exponents de'and » depend on the looped or unlooped character of the

pend only on the dimensionality of the considered lattices. Irl:hain This result was unexpected. On tregand v are not

order to test a possible universality for the dynamic epldeml’iffected by the introduction of a dynamical interaction and

ics, the critical exponents characterizing respectively the COlyo
. X ) ps.

relation length divergence and the cluster mass divergence

near the threshold have been determined. For static epidem-

ics, universality is effectively recovered since the exponents

depgnd o_nIy on the _Igttlce dimensionality. However, for dy- ACKNOWLEDGMENTS
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